-
McDermott, U., Downing, J. R. & Stratton, M. R. Genomics and the continuum of cancer care. N. Engl. J. Med. 364, 340–350 (2011).
-
Google Scholar
-
Berger, M. F. & Mardis, E. R. The emerging clinical relevance of genomics in cancer medicine. Nat. Rev. Clin. Oncol. 15, 353–365 (2018).
Google Scholar
-
Melton, C., Reuter, J. A., Spacek, D. V. & Snyder, M. Recurrent somatic mutations in regulatory regions of human cancer genomes. Nat. Genet. 47, 710–716 (2015).
Google Scholar
-
Aaltonen, L. A. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
Google Scholar
-
Fredriksson, N. J., Ny, L., Nilsson, J. A. & Larsson, E. Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types. Nat. Genet. 46, 1258–1263 (2014).
Google Scholar
-
Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018).
Google Scholar
-
Leongamornlert, D. et al. Diagnostic utility of whole genome sequencing in adults with B-other acute lymphoblastic leukemia. Blood Adv. 7, 3862–3873 (2023).
Google Scholar
-
Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221 (2016).
Google Scholar
-
Shukla, N. et al. Feasibility of whole genome and transcriptome profiling in pediatric and young adult cancers. Nat. Commun. 13, 2485 (2022).
Google Scholar
-
Ryan, S. L. et al. Whole genome sequencing provides comprehensive genetic testing in childhood B-cell acute lymphoblastic leukaemia. Leukemia 37, 518–528 (2023).
Google Scholar
-
Stenzinger, A. et al. Implementation of precision medicine in healthcare—a European perspective. J. Intern. Med. 294, 437–454 (2023).
-
Worst, B. C. et al. Next-generation personalised medicine for high-risk paediatric cancer patients—the INFORM pilot study. Eur. J. Cancer 65, 91–101 (2016).
Google Scholar
-
Berlanga, P. et al. The European MAPPYACTS Trial: precision medicine program in pediatric and adolescent patients with recurrent malignancies. Cancer Discov. 12, 1266–1281 (2022).
Google Scholar
-
Harttrampf, A. C. et al. Molecular Screening for Cancer Treatment Optimization (MOSCATO-01) in pediatric patients: a single-institutional prospective molecular stratification trial. Clin. Cancer Res. 23, 6101–6112 (2017).
Google Scholar
-
Langenberg, K. P. S. et al. Implementation of paediatric precision oncology into clinical practice: the Individualized Therapies for Children with Cancer program ‘iTHER’. Eur. J. Cancer 175, 311–325 (2022).
Google Scholar
-
Villani, A. et al. The clinical utility of integrative genomics in childhood cancer extends beyond targetable mutations. Nat. Cancer 4, 203–221 (2023).
Google Scholar
-
Wong, M. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 26, 1742–1753 (2020).
-
Lau, L. M. S. et al. Precision-guided treatment in high-risk pediatric cancers. Nat. Med. https://doi.org/10.1038/s41591-024-03044-0 (2024).
-
Trotman, J. et al. The NHS England 100,000 Genomes Project: feasibility and utility of centralised genome sequencing for children with cancer. Br. J. Cancer 127, 137–144 (2022).
Google Scholar
-
Zero Childhood Cancer precision medicine program expands to include all young Australians with cancer. Children’s Cancer Institute https://www.zerochildhoodcancer.org.au/blog/zero-childhood-cancer-precision-medicine-program-expands-to-include-all-young-australians-with-cancer (2023).
-
Rezayee, F. et al. Feasibility to use whole-genome sequencing as a sole diagnostic method to detect genomic aberrations in pediatric B-cell acute lymphoblastic leukemia. Front. Oncol. 13, 1217712 (2023).
Google Scholar
-
Wadensten, E. et al. Diagnostic yield from a nationwide implementation of precision medicine for all children with cancer. JCO Precis. Oncol. https://doi.org/10.1200/PO.23.00039 (2023).
-
Newman, S. et al. Genomes for kids: the scope of pathogenic mutations in pediatric cancer revealed by comprehensive DNA and RNA sequencing. Cancer Discov. 11, 3008–3027 (2021).
Google Scholar
-
Church, A. J. et al. Molecular profiling identifies targeted therapy opportunities in pediatric solid cancer. Nat. Med. 28, 1581–1589 (2022).
Google Scholar
-
Parsons, D. W. et al. Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. 2, 616–624 (2016).
Google Scholar
-
Locasciulli, A. et al. Outcome of patients with acquired aplastic anemia given first line bone marrow transplantation or immunosuppressive treatment in the last decade: a report from the European Group for Blood and Marrow Transplantation. Haematologica 92, 11–18 (2007).
Google Scholar
-
Samarasinghe, S. & Webb, D. K. H. How I manage aplastic anaemia in children. Br. J. Haematol. 157, 26–40 (2012).
Google Scholar
-
Yoshida, N. et al. Predicting response to immunosuppressive therapy in childhood aplastic anemia. Haematologica 96, 771–774 (2011).
Google Scholar
-
Zhang, J. et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat. Genet. 48, 1481–1489 (2016).
Google Scholar
-
Jeha, S. et al. Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy. Blood Cancer Discov. 2, 326–337 (2021).
Google Scholar
-
Gu, Z. et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat. Genet. 51, 296–307 (2019).
Google Scholar
-
De Noon, S. et al. Recurrent FOSL1 rearrangements in desmoplastic fibroblastoma. J. Pathol. 259, 119–124 (2023).
Google Scholar
-
Butler, E. et al. Recent progress in the treatment of cancer in children. CA Cancer J. Clin. 71, 315–332 (2021).
Google Scholar
-
Smith, M. et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J. Clin. Oncol. 28, 2625–2634 (2010).
Google Scholar
-
Lee, J., Gillam, L., Visvanathan, K., Hansford, J. R. & McCarthy, M. C. Clinical utility of precision medicine in pediatric oncology: a systematic review. JCO Precis Oncol https://doi.org/10.1200/PO.20.00405 (2021).
-
Bertacca, I., Pegoraro, F., Tondo, A. & Favre, C. Targeted treatment of solid tumors in pediatric precision oncology. Front. Oncol. 13, 1176790 (2023).
Google Scholar
-
Shahani, S. A. & Marcotte, E. L. Landscape of germline cancer predisposition mutations testing and management in pediatrics: implications for research and clinical care. Front. Pediatr. 10, 1011873 (2022).
Google Scholar
-
Our assays—East Genomics. NHS East Genomics https://www.eastgenomics.nhs.uk/for-healthcare-professionals/genomic-tests/haematological-malignancy/our-assays/ (2024).
-
SWGLH Requesting a genomic test for haematological malignancy. NHS South West Genomic Laboratory Hub https://www.nbt.nhs.uk/south-west-genomic-laboratory-hub/swglh-sample-test-information/swglh-requesting-a-genomic-test-haematological-malignancy (2022).
-
Colomer, R. et al. Usefulness and real-world outcomes of next generation sequencing testing in patients with cancer: an observational study on the impact of selection based on clinical judgement. EClinicalMedicine 60, 102029 (2023).
Google Scholar
-
Moorman, A. V. et al. A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia. Blood 124, 1434–1444 (2014).
Google Scholar
-
Sanz, M. A. et al. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood 133, 1630–1643 (2019).
Google Scholar
-
Summers, R. J. et al. Comprehensive genomic profiling of high-risk pediatric cancer patients has a measurable impact on clinical care. JCO Precis. Oncol. https://doi.org/10.1200/PO.21.00451 (2022).
-
Cuppen, E. et al. Implementation of whole-genome and transcriptome sequencing into clinical cancer care. JCO Precis. Oncol. https://doi.org/10.1200/PO.22.00245 (2022).
-
Schwarze, K. et al. The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom. Genet. Med. 22, 85–94 (2020).
Google Scholar
-
Alonso-Luna, O., Mercado-Celis, G. E., Melendez-Zajgla, J., Zapata-Tarres, M. & Mendoza-Caamal, E. The genetic era of childhood cancer: identification of high-risk patients and germline sequencing approaches. Ann. Hum. Genet. 87, 81–90 (2023).
Google Scholar
-
Sweet-Cordero, E. A. & Biegel, J. A. The genomic landscape of pediatric cancers: implications for diagnosis and treatment. Science 363, 1170–1175 (2019).
Google Scholar
-
Briggs, M. et al. Recurrent posterior fossa group A (PFA) ependymoma in a young child with constitutional mismatch repair deficiency (CMMRD). Neuropathol. Appl. Neurobiol. 49, e12862 (2023).
Google Scholar
-
Chadda, K. R. et al. Embryonal tumor with multilayered rosettes: overview of diagnosis and therapy. Neurooncol. Adv. 5, vdad052 (2023).
Google Scholar
-
Green, R. et al. Wilms tumor with raised serum alpha-fetoprotein: highlighting the need for novel circulating biomarkers. Pediatr. Dev. Pathol. https://doi.org/10.1177/10935266231213467 (2023).
-
Tate, J. G. et al. COSMIC: the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 47, D941–D947 (2019).
Google Scholar
-
Islam, S. M. A. et al. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Cell Genom. 2, 100179 (2022).
Google Scholar
#Benefits #children #suspected #cancer #routine #wholegenome #sequencing #Nature #Medicine
Image Source : www.nature.com